Global convergence of SSM for minimizing a quadratic over a sphere
نویسندگان
چکیده
In an earlier paper [Minimizing a quadratic over a sphere, SIAM J. Optim., 12 (2001), 188–208], we presented the sequential subspace method (SSM) for minimizing a quadratic over a sphere. This method generates approximations to a minimizer by carrying out the minimization over a sequence of subspaces that are adjusted after each iterate is computed. We showed in this earlier paper that when the subspace contains a vector obtained by applying one step of Newton’s method to the first-order optimality system, SSM is locally, quadratically convergent, even when the original problem is degenerate with multiple solutions and with a singular Jacobian in the optimality system. In this paper, we prove (nonlocal) convergence of SSM to a global minimizer whenever each SSM subspace contains the following three vectors: (i) the current iterate, (ii) the gradient of the cost function evaluated at the current iterate, and (iii) an eigenvector associated with the smallest eigenvalue of the cost function Hessian. For nondegenerate problems, the convergence rate is at least linear when vectors (i)–(iii) are included in the SSM subspace.
منابع مشابه
Minimizing a Quadratic Over a Sphere
A new method, the sequential subspace method (SSM), is developed for the problem of minimizing a quadratic over a sphere. In our scheme, the quadratic is minimized over a subspace which is adjusted in successive iterations to ensure convergence to an optimum. When a sequential quadratic programming iterate is included in the subspace, convergence is locally quadratic. Numerical comparisons with...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملRegression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملAnalysis of a Quadratic Programming Decomposition Algorithm
We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x1 and x2, subject to the constraint that x1 and x2 are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separately, while enforcing the constraints, followed by a global step where we minimize over a subspace g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 74 شماره
صفحات -
تاریخ انتشار 2005